

Inference and Annotation of the Sugarcane Pan-Transcriptome

Felipe Vaz Peres¹, Diego Mauricio Riaño-Pachón¹, Jorge Mario Muñoz-Pérez¹

1. Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil

(Saccharum spp.)

Agriculture - 2022/2023 harvest - 596.066 millions of tons¹ Economy - 2% Brazilian GDP²

A transcriptome, by definition, is a complete set of transcripts from an organism, tissue, or cell lineage. Being the direct reflection of the expression of genes.

PUBLIC DATA

PAPERS 12

GENOTYPES

48

PMID	Sequencing Technology	Genotypes	
26714767 (Mattielo et al. 2015)	Illumina Hiseq 2500	SP80-3280	
29862346 (Hoang et al. 2018)	Illumina HiSeq 4000	QC02-402, QA02-1009, QN05-1460, QN05-1743, QN05-1509, QS99-2014, QA9 6-1749, Q241, Q200, QN05-803, KQB07-23863, KQB08-32953, KQB07-23990, KQ08-2850, KQB07-24619, KQB07-24739, QBYN04-26041, KQB09-23137, KQB09-20620, KQB09-20432	
31782791 (Souza et al. 2019)	Illumina Synthetic Long-Read	SP80-3280	
28532419 (Hoang et al. 2017)	Illumina HiSeq 4000	KQ228, Q208, QC02-402, QA02-1009, QN05-1460, QN05-1743, QN05-1509, QS99-2014, QA96-1749, Q241, Q200, QN05-803, KQB07-23863, KQB08-32953, KQB07-23990, KQ08-2850, KQB07-24619, KQB07-24739, QBYN04-26041, KQB09-23137, KQB09-20620, KQB09-20432	
29374206 (Xu et al. 2018)	Illumina Hiseq 2500	GXU-34140, GXU-34176, GUC2, GUC10, GN18, FN95–1702	
26946183 (Li et al. 2016)	Illumina HiSeq 2000	parents (GT96-167, ROC-26), F1 (42-1, 42-2), F1 (42-6, 42-16)	
None (Banerjee et al. 2019)	Illumina HiSeq2000	MS 68/47, CoV 92102	
32399386 (Selvi et al. 2020)	Illumina Nextseq500	Co 06022, Co 8021	
29795614 (McNeil et al. 2018)	Illumina HiSeq 2000	CP74-2005	
31817492 (Ntambo et al. 2019)	Illumina NovaSeq 6000	LCP 85-384, ROC20	
31861562 (Chu et al. 2019)	Illumina NovaSeq 6000	ROC22, MT11-610	
32993494 (Correr et al. 2020)	Illumina Hiseq 2500	Hybrids: US85–1008, TUC71–7. Modern: RB72454, SP80–3280, RB855156	

TRANSCRIPTOME ASSEMBLY

DAG - Directed Acyclic Graph generated by Snakemake⁵

- 4 Our automated pipeline is available at: https://github.com/labbces/YAATAP
- 5 Köster, J., Rahmann, S. (2012) Snakemake a scalable bioinformatics workflow engine, Bioinformatics, Volume 28, Issue 19, 1 October 2012, Pág 2520–2522 https://doi.org/10.1093/bioinformatics/bts480

CONTAMINATION REMOVAL

ContFree-NGS - Removing contaminants from reads

RESULTS

PAN-TRANSCRIPTOME INFERENCE⁵

Number of genotypes	48	
Number of total transcripts	16,237,098	
Number of transcripts with CDS	5,240,794	
Percentage of transcripts with CDS in orthogroups	96.9	
Total groups	153,841	
Core groups	12,738	
Genotype-specific groups	653	

Metric

SUGARCANE PAN-TRANSCRIPTOME

SUGARCANE PAN-TRANSCRIPTOME

SUGARCANE PAN-TRANSCRIPTOME

Analysis of enriched GO terms in exclusive groups

Cut-off lines drawn at equivalents of p=0.05, p=0.01, p=0.001

CONCLUSIONS

- ➤ We assembled 48 sugarcane genotype-specific transcriptomes that contains 16,237,098 assembled transcripts (5,240,794 of these have CDS).
- Clustering based on sequence similarity classified all transcripts with CDS into 153,841 groups.
- Total number of transcript groups increased as additional transcriptomes were added and approached a plateau when n >= 24 genotypes were included (143,290 groups and 5,077,629 transcripts). Similarly, the core transcriptome size also reaches a plateau, even faster than the pan-transcriptome, when n >= 11 genotypes (13,978 groups and 2,853,218 transcripts).
- hard-core, soft-core, accessory, and exclusive groups are composed of 301,937; 817,355; 3,711,778; and 117,189 transcripts, respectively."

ACKNOWLEDGMENTS

Thanks!
Have any questions or suggestions?
Contact: felipe.vzps@gmail.com

This research has been supported by São Paulo Research Foundation (FAPESP), project number: 2019/24796-5 to FVP, by (CAPES), project number: 88887.597556/2021-00 to JMMP, and by National Council for Scientific Technological Development (CNPq), project number: 310080/2018-5 and 311558/2021-6 to DMRP. DMRP is a level 2 CNPq research fellow.

